			- N			
USN				- 10	1 14	
					100	0 - 0

First/Second Semester B.E. Degree Examination, June/July 2016 Engineering Physics

Engine	eering Physics
Time: 3 hrs.	Max. Marks:100
3. Answer to objective type question Physical Contants: h = 6.625 >	is, choosing at least two from each part. Sons only on OMR sheet page 5 of the answer booklet. In son sheets other than OMR will not be valued. A 10^{-34} Js, $C = 3 \times 10^8$ m/s, $E = 1.6 \times 10^{-19}$ C, 10^{-23} JK ⁻¹ , $\epsilon_0 = 8.854 \times 10^{-12}$ Fm ⁻¹ .
	PART – A
 a. Choose the correct answers for the i) With increase in temp of blactowards A) Shorter wavelength 	
C) No change	D) None of these
ii) Green light incident on a sur blue light is incident on the sar	face releases photoelectrons from the surface. If the me surface the velocity of electrons.
iii) The group velocity of the part A) 6.06×10^6 m/s B) 3×10^6	ases C) Remains same D) Becomes zero icle is 3×10^6 m/s, whose phase velocity is 10 m/s C) 3×10^6 m/s D) 1.5×10^{10} m/s
iv) Electron behaves as wave, bec	
A) Deflected by Electric fieldC) Diffracted by crystals	
 b. Describe Davison and Germer's elength. 	experiment for the justification of de – Broglie wave (06 Marks)
. 0	glie wavelength using the concept of group velocity. (06 Marks)
d. A particle of mass 0.5 mev/C ² has where 'C' is the velocity of light.	kinetic energy 100eV. Find its de-Broglie wavelength (04 Marks)
2 a. Choose the correct answers for the	e following: (04 Marks)
i) The uncertainty in the determ	ination of position of an electron is $\left(\frac{h}{3\pi}\right)$, then the
uncertainty in the determination	ns of its momentum is
A) $\frac{1}{4}$ B) $\frac{4}{3}$	C) $\frac{3}{4}$ D) 3
A) 4 Mev B) 10 Ke	
iii) Wave function is an acceptableA) Finite every whereC) Single valued everywhere	B) Continuous every where D) Having all these properties.

(04 Marks)

		iv) The normalization of wave function is always possible if
		A) $\int_{-\infty}^{\infty} \psi^* dx = \text{infinite}$ B) $\int_{-\infty}^{\infty} \psi^* dx = \text{finite}$ C) $\int_{-\infty}^{\infty} \psi^* dx = 0$ D) All of these
	c.	State and explain Heisenberg's uncertainty principle. Solve the Schrodinger wave equations for allowed energy values in case of a particle in a potential box of infinite height. Estimate the time spent by an atom in the excited state during the excitation and deexcitation processes, when a spectral line of wavelength 546nm and width 10-5nm is emitted. (04 Marks)
3	a.	Choose the correct answers for the following: i) For ordinary metals, the resistivity versus temperature curve at OK A) has a positive intercept C) goes through the origin D) None of these ii) Mobility of electron is A) Reciprocal of conductivity B) Flow of electrons per unit time
		 C) Reciprocal of resistivity D) Average electron drift velocity/unit electric field. iii) Average drift velocity Vd of electrons in a metal is related to the electric field and collision time τ.
		A) $\sqrt{\frac{m}{eE\tau}}$ B) $\frac{eE\tau}{m}$ C) $\sqrt{\frac{eE\tau}{m}}$ D) $\frac{m}{eE\tau}$
		iv) The Fermi energy of a metal at absolute zero temperature is proportional to A) $n^{1/3}$ B) $n^{3/2}$ C) $n^{2/3}$ D) n^2
		Using free electrons theory derive an expression for electrical conductivity in metals. (06 Marks) Explain how quantum free electron theory succeeds on overcoming the drawbacks of classical free electron theory. (06 Marks)
	d.	Calculate the probability of an electron occupying an energy level 0.02ev above the fermi level at 200K and 400K in a material. (04 Marks)
4	a.	Choose the correct answers for the following: i) When a dielectric material is subjected to an external electric field, the internal field will be
		A) lesser than the applied field B) greater than the applied field C) same as the applied field D) Zero
		ii) The energy due to dielectric loss appears as
	_C	A) light energy B) heat energy C) sound energy D) electromagnetic energy
4	U	C) sound energy D) electromagnetic energy iii) Piezoelectric effect is the production of energy by
100		A) chemical effect B) varying field C) temperature D) pressure
		iv) For Ferro magnetic substance, the Curie – Weirs law is given by
		T-A
		A) $\Psi = \frac{C}{T}$ B) $\Psi = \frac{T - \theta}{C}$ C) $\Psi = \frac{C}{T - \theta}$ D) $\Psi = \frac{C}{T + \theta}$
	b.	Define Dielectric Polarizations. Discuss any three types of polarization mechanism in dielectrics. (07 Marks)
	c.	Distinguish between Hard & soft magnetic materials. (05 Marks)
	d.	A solid dielectric material has electronic polarizability 7×10^{-40} F m ² . If it is a cubic structure, calculate the relative permittivity of the materials. It has 3×10^{28} atoms/m ³ .

		PART - B
5	a.	Choose the correct answers for the following: i) The relation between Einstein's coefficients A and B is
		A) $\frac{8\pi h \lambda^3}{C^3}$ B) $\frac{8\pi h^2 \gamma^3}{C^3}$ C) $\frac{8\pi h \gamma^3}{C^2}$
		ii) Condition for lasing action is A) Excitations B) Absorption C) Emission D) Population inversion
		iii) Pumping process in Ga As laser is by A) Optical pumping B) Forward bias
		C) Electric discharge D) None of these iv) In recording the image on the photographic plate, the reference beam and the object
		beam undergo at the photographic plate A) Interference B) Diffraction C) Dispersion D) None of these
		Discuss the possible ways through which radiation and matter interaction takes place. (06 Marks)
	c.	Describe the construction and working of He – Ne laser with the help of energy level diagram. (06 Marks)
	d.	A medium in thermal equilibrium at temperature 300K has two energy levels with a wavelength separation 1µm. Find the ratio of densities of the upper and lower levels. (04 Marks)
6	a.	Choose the correct answers for the following: (04 Marks) i) Fractional index change for an optical fiber with core and cladding refractive indices 1.563 and 1.498 respectively is
		A) 0.00415 B) 0.04159 C) 0.04300 D) 0.00400 ii) In graded index fiber the refractive index of the core varies A) Linearly B) Parabolic manner C) exponential manner D) None of these
		iii) The critical field strength of a superconductor A) is inversely proportional to temperature B) is proportional to temperature
		C) varies with temperature D) is independent of temperature iv) The phase transition from superconducting to normal state can be effected by means
		of Meissner effect. This principle can be used in A) switching devices B) measuring technology C) NMR tomography D) Bubble chambers
	b.	Describe Type – I and Type – II super conductors. (05 Marks)
		What is numerical aperture? Obtain an expression for numerical aperture and obtain the
	0	condition for propagation in optical fiber. (07 Marks)
100	d.	The attenuation of light in an optical fiber is 3.6 dB/km. What fractional intensity remains after 1km and 2km? (04 Marks)
7	a.	Choose correct answers for the following: i) The coordination number incase of FCC is (04 Marks)
		A) 6 B) 8 C) 12 D) 16
		ii) The relation between lattice constant 'a' and atomic radius 'r' in case of BCC structure is
		A) $a = \sqrt{2} r$ B) $a = \frac{4}{\sqrt{2}} r$ C) $a = 2\sqrt{2} r$ D) $a = 2r$

 $\{X_{i}, X_{i}\}_{i \in \mathcal{N}} \leq \epsilon_{i}$

		iii) In a cubic crystal a plane make interrupts 1, -3, 1 on the X, Y and Z axes
		respectively. The miller indices of the plane are A) $(\overline{3} \ 1 \ \overline{3})$ B) $(3 \ \overline{1} \ 3)$ C) $(1 \ \overline{3} \ 1)$ D) $(\overline{1} \ 3 \ \overline{1})$
		iv) The packing fraction of diamond crystal structure is A) 34% B) 52% C) 68% D) 74%
	h	Derive an expression for interplanar spacing interms of miller indices. (05 Marks)
		Explain in brief the seven crystal system with neat diagram. (07 Marks)
	d.	A beam of X - rays of wavelength 0.071nm is diffracted by (110) plane of rock salt
		with lattice constant of 0.28nm. Find the glancing angle for the second order diffraction. (04 Marks)
	8 a.	Choose the correct answers for the following: (04 Marks)
		i) Bulk material reduced in two directions is known as
		A) quantum dot B) quantum particle C) film D) quantum wire ii) Fullerene is
		A) A sheet of carbon atoms rolled up into long tube
		B) Sixty carbon atoms arranged in the shape of a foot ball
		C) One dimensional array of atoms D) Three dimensional array of atoms.
		iii) The elastic behaviour of a liquid is characterized by its A) Young's modulus B) Modulus of rigidity
		C) Bulk modulus D) Poisson's ratio
		iv) A constant testing of product with out carrying any damage is called
		A) Minute testing B) Destructive testing
		C) Non destructive testing D) Random testing.
	b.	What are Nanomaterials? Explain carbon nanotunes and their applications by giving their physical properties. (08 Marks)
	c.	Explain the principle and method of non destructive method of testing of materials
		using ultrasonic's. (08 Marks)
		d benefit a contract of the co
		The state of the s
		Contract tracking the party of the contract of
		Mineral and the second and the second to the second and the second
	-5	****
	10	
V	113	
(0)		Night ****
1/11-		